

BUILDING THE BIOECONOMY 2015 Examining National Biotechnology Industry Development Strategies Globally

This report was commissioned by the Biotechnology Industry Organization. The views represented here are those of the authors only.

Copyright © Pugatch Consilium 2015

The moral right of the authors has been asserted.

All rights reserved. Without limiting the rights under copyright reserved above, no part of this publication may be reproduced, stored or introduced into a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), without the prior written permission of both the copyright owner and the publisher.

CONTENTS

LIST OF ABBREVIATIONS	5
EXECUTIVE SUMMARY	9
 INTRODUCTION Building the Bioeconomy 2015 – What's new? Report overview 	15 15 17
2 BIOTECHNOLOGY INNOVATION2.1 R&D vs. manufacturing	18 20
 3 NATIONAL STRATEGIES TO ENCOURAGE BIOTECHNOLOGY ACTIVITY 3.1 What is a National Innovation Strategy? 3.2 Promoting biotech innovation: Seven enabling factors 	23 23 23
 4 THE MICRO LEVEL - UNDERSTANDING SECTOR BY SECTOR NEEDS 4.1 Biopharmaceuticals 4.2 Ag-bio 4.3 Industrial biotechnology 	31 31 32 33
 MAPPING NATIONAL BIOTECHNOLOGY INNOVATION STRATEGIES Brazil China China India India Korea Korea Malaysia Mexico Mexico Mexico Singapore South Africa South Africa Switzerland Urited Kingdom United States 	 35 38 42 46 50 53 56 60 64 67 71 74 77 80

CONTENTS (continued)

6 COI	MPARING PERFORMANCE	85			
6.1 Build	ding a policy performance measure	85			
6.2 Indicators included					
	sification system	86			
6.4 Calc	ulations	87			
6.5 The	Biotech Policy Performance Measure: Overall results	87			
7 THE	STATE OF THE GLOBAL BIOECONOMY 2015	91			
7.1 Less	ons in enabling biotechnology innovation	92			
NOTES		95			
TABLES	AND FIGURES				
Table 1	<i>Building the Bioeconomy 2015</i> , Sampled economies by World Bank Economy Group	16			
Table 2	Enabling factors	29			
Figure 1	Scientific American Worldview Scorecard 2014, economies sampled	36			
Table 3	Enabling factors in Brazil	41			
Table 4	Enabling factors in China	45			
Table 5	Enabling factors in India	49			
Table 6	Enabling factors in Korea	52			
Table 7	Enabling factors in Malaysia	55			
Table 8	Enabling factors in Mexico	59			
Table 9	Enabling factors in Russia	63			
Table 10	Enabling factors in Singapore	66			
Table 11	Enabling factors in South Africa	70			
Table 12	Enabling factors in Switzerland	73			
Table 13	Enabling factors in Turkey	76			
Table 14	Enabling factors in the United Kingdom	79			
Table 15	Enabling factors in the US	83			
Table 16	Biotech Policy Performance Measure, indicators used per enabling factor	86			
Table 17	The Biotech Policy Performance Measure: Overall results	88-9			
Figure 2	Association between the level of IP protection and clinical trial activity	93			

EXECUTIVE SUMMARY

Building the Bioeconomy examines and identifies policies and best practices that pave the way for a creating an environment and ecosystem that enables biotech innovation. The 2015 edition focuses on 13 countries: Brazil, China, India, Korea, Malaysia, Mexico, Russia, Singapore, South Africa, Switzerland, Turkey, the UK and the United States. Using a comparative perspective and looking in detail at the country specific-level, the report identifies several important findings as well as lessons learned.

Enabling factors for growing a robust a national biotechnology echo system

Designing an environment that is conducive to the innovation, research, commercialization and marketing of biotechnological products and technologies is not an exact science. There are a myriad of factors that potentially can affect, encourage or discourage rates of biotech innovation. Relevant policies and factors range from those specific to the biotechnology sector and the life sciences to more general ones affecting broader levels of innovation and economic activity. Yet based on the existing empirical literature and the experience of economies that have been successful in building an advanced biotech capacity, it is possible to identify seven enabling factors that together create a national environment conducive to the biotech field.

1. Nurturing human capital

A basic and fundamental building block for the biotech sector is the availability of high skilled and technically trained human capital.

2. Investing in physical and technological infrastructure for R&D

R&D infrastructure and capacity is critical to fostering innovation and activity in high tech sectors including biotechnology.

3. Protection of intellectual property rights (IPRs) IPRs such as patents and regulatory data protection are historically of real importance to the biotech and biopharmaceutical innovation process as they incentivise the development of new technologies and products. 4. Maintaining a stable, efficient and predictable regulatory environment

The regulatory and clinical environment in a given country or region plays a significant role in shaping incentives for innovation and establishing levels of quality and safety for biotech products.

- 5. Introducing technology transfer frameworks and enhancing public-private collaborations Technology transfer is an important mechanism for commercializing and transferring research from public and governmental bodies to private entities and private to private entities.
- 6. Providing for market and commercial incentives Market and commercial incentives can come through a number of different forms such as tax incentives and R&D credits for investments in plant, equipment and other R&D infrastructure. For the biopharmaceutical sector pricing and reimbursement systems for medicines and health technologies can have a profound impact on the incentives for biopharmaceutical innovation.
- 7. The existence of legal certainty and protecting the rule of law

The general legal environment including as it relates to the rule of law and the rule of law within a business context is crucial to commercialization and business activities.

Together these factors create the policy infrastructure upon which different countries can develop and promote their biotech ecosystems. Still while these factors are fundamental at the systemic macro level, there is also a need to supplement them with policies and actions that are more nuanced and sector-specific.

One size does not fit all – Different biotech sectors have different policy needs

The individual significance of related policies for each biotechnology sector, such as in the fields of biopharmaceutical, ag-bio and industrial biotechnology, may vary, at times significantly, depending on the specific needs of that particular sector. A national strategy or set of policies that are aimed at growing the capacity and productivity of one biotech sector (for example in the field of agbio), may not necessarily be suitable for the ability to grow or develop products in other sectors, such as the development of new biopharmaceutical medicines.

Some interesting lessons can be found in the desire and ability of different countries to grow their own biotechnological base in the life sciences. For instance, while Brazil has through EMBRAPA and long-term support for the sugarcane ethanol industry built a world-leading ag-bio and industrial biotech capacity, so far success has been more elusive in the innovative biopharmaceutical sector. South Africa and India also face a similar situation. A possible explanation for the relatively more limited success these countries have experienced is the fact that there are still a number of grey or incomplete policy areas that are pivotal to the ability to enhance the biopharmaceutical sector, and that are still absent in these countries. Such policy areas include: the need to introduce and protect different forms of IPRs specific to the biopharmaceutical sector; incomplete or ineffective technology transfer policies and frameworks; regulatory delays and inefficiencies in the review and approval of new products; and the absence of satisfactory market incentives.

In contrast other countries have developed and are developing more holistic sector-specific programs that help drive forward their biopharmaceutical sector. For example, Singapore, the US, the UK and Switzerland have built state-of-the-art biopharmaceutical R&D and manufacturing facilities through targeted policies on biopharmaceutical IPRs, high-standard regulations, and commercial and market incentives. The table on the next page provides a summary overview of some of the major success stories and remaining stumbling blocks for each of the thirteen economies mapped.

The importance of tracking and measuring policy inputs and outputs –the Biotech Policy Performance Measure

Being able to track progress and identify areas of weakness is key to any national policy framework; including in the field of biotechnology. In this respect it is also important not only to focus on the policy inputs but also to try and understand how they may translate into national outputs.

Building the Bioeconomy 2015 includes a new tool: the Biotech Policy Performance Measure. This tool (the "Measure") provides readers a quick overview of a given economy's policy framework and performance in relation to the other economies sampled. The Measure includes some of the most important elements for each of the seven enabling factors used to map a given economy's policy framework including relevant biotechnology policy inputs and outputs. It uses a simple three-tier classification system of policy performance: "Attractive", "Mixed", and "Challenging".

While the purpose of the Measure is not to 'score' or benchmark individual countries to a predetermined set of criteria it does provide users an idea of how a sample of policies (including inputs and outputs) for each enabling factor compares with the same policy input or output for all economies included in the report. Overall the results show the great variety between economies as well as for each enabling factor for a given economy. For instance, economies can have quite attractive policies and frameworks in place for some enabling factors yet face more significant challenges in other areas. The full results of the Biotech Policy Performance Measure are included in the table on pages 12 and 13.

	Success stories	Stumbling blocks			
Brazil	 Government support for ag-bio and industrial biotechnology e.g. EMBRAPA and sugar-cane ethanol Brasil Maior initiative - focus on life sciences and need for improving human capital 	 Challenging IP environment Biopharmaceutical P&R environment challenging - strict pricing policies and local preferencing Cumbersome tech transfer framework 			
China	 Significant investor in human capital and R&D infrastructure High levels of IP creation through patenting (general and biotech 	 Challenging regulatory environment for clinical trials and seed registration and commercialization Strict reimbursement policies have limited the number of biological drugs available Challenging IP environment 			
India	 Tradition of strong Government focus on biotech Potential policy change by Modi Government – focus on innovation, improving IP standards 	 No comprehensive national tech transfer framework Uncertainty over Government support for commercialization and registration of ag-bio products IP environment: Section 3(d) and patentability requirements; no RDP; use of compulsory licenses and patent revocations for biopharmaceuticals 			
Korea	 High levels of R&D investment Comprehensive tech transfer legal framework in place Strong IP environment 	 No commercialized ag-bio products Data requirements for pharmaceutical patent application exceed international best practices Strict pricing policies and limited reimbursement 			
Malaysia	 Generous high tech and biotech specific credits e.g. BioNexus Relatively high level of technology transfer and patenting by palm oil PRO (Malaysian Palm Oil Board) 	 RDP legally in place but limited in practical availability Delays in marketing approval of biopharmaceuticals P&R environment challenging - long formulary delays 			
Mexico	 Growing biopharmaceutical FDI - circa USD1 billion in 2012 Cut in market approval processing times by COFEPRIS 	 Biopharmaceutical P&R environment challenging Limited tech transfer framework in place RDP available but unclear for large molecules 			
Russia	High number of natural science PhDsGenerous R&D tax credits available	 Limited commercial use of ag-bio products – regulatory infrastructure not in place Strict localization and P&R policies 			
Singapore	 World class biopharmaceutical R&D and manufacturing hub High levels of clinical trials Strong IP, regulatory and tech transfer environment Generous R&D tax credits available 	No commercial cultivation of ag-bio productsLimited industrial biotech			
South Africa	 Strong tradition of ag-bio use and production Generous R&D tax super deduction available Technology transfer framework in place 	 Challenging life sciences IP environment Limited biopharmaceutical R&D capacity Long delays for pharmaceutical market authorization 			
Switzerland	 High levels of human capital Leading global investor in biopharmaceutical R&D Strong clinical trials environment 	No commercial production of ag-bio productsGM foods in effect banned			
Turkey	 Generous general R&D tax credits available - 150% dedication Growing number of life sciences graduates - 250% increase since 2000 	 Challenging biopharmaceutical IP environment Ag-bio R&D taking place but no commercialization Strict P&R policies for biopharmaceuticals 			
UK	 Top life sciences universities in the world; Cambridge and Oxford ranked 3rd and 4th High levels of clinical trials - per capita and total Biopharmaceutical R&D almost 25% of total private sector R&D 	• EU regulations on ag-bio not conducive to wide-sprea commercialization and use of ag-bio products			
US	 Top life sciences universities in the world World's highest total of clinical trials High total biopharmaceutical R&D Biggest producer of ag-bio crops in the world 	• Uncertainties over patentability of basic biotech invention e.g. 2013 Molecular Pathology v Myriad Genetics and 2012 Prometheus Laboratories, Inc v Mayo Collaborative Services			

Country overview - Success stories and Stumbling blocks

• Leading producer of biofuels in the world

The Biotech Policy Performance Measure: Overall results

	Brazil	China	India	Korea	Malaysia	Mexico	Russia	
Factor 1: Human capital								
No of researchers per capita (million population)	710	1020	160	5928	1642	386	3096	
% of population in tertiary education	0.13	0.04	N/A	0.4	0.05	0.18	0.53	
Performance compared to Sample	Challenging	Challenging	Challenging	Attractive	Mixed	Mixed	Attractive	
Factor 2: Infrastructure for R	&D							
R&D spending % of GDP	1.21	1.98	0.76	4.36	1.07	0.43	1.12	
Clinical trials per capita	20.08665605	3.9398228	2.009078952	112.4663863	14.27980132	18.21854186	19.21017825	
Performance compared to Sample	Mixed	Mixed	Challenging	Attractive	Challenging	Challenging	Mixed	
Factor 3: Intellectual propert	ty protection							
RDP	Challenging	Challenging	Challenging	Attractive	Challenging	Challenging	Challenging	
PTE	Challenging	Challenging	Challenging	Attractive	Challenging	Challenging	Attractive	
Performance compared to Sample	Challenging	Challenging	Challenging	Attractive	Challenging	Challenging	Mixed	
Factor 4: The regulatory env	ironment							
Existence of regulatory framework and efficiency	Challenging	Challenging	Challenging	Attractive	Challenging	Mixed	Challenging	
Factor 5: Technology transfe	r frameworks							
Frameworks in place	Mixed	Attractive	Challenging	Attractive	Challenging	Challenging	Challenging	
Factor 6: Market and commercial incentives								
P&R policies	Challenging	Challenging	Challenging	Challenging	Challenging	Challenging	Challenging	
Factor 7: Legal certainty (including the rule of law)								
RoL index ranking	42	76	66	14	35	79	80	
Performance compared to Sample	Mixed	Challenging	Challenging	Attractive	Mixed	Challenging	Challenging	

The Biotech Policy Performance Measure: Overall results

	South Africa	Singapore	Switzerland	Turkey	UK	US		
Factor 1: Human capital								
No of researchers per capita (million population)	363	6437	5500	987	4042	3978		
% of population in tertiary education	0.06	N/A	0.35	0.15	0.41	0.42		
Performance compared to Sample	Challenging	Attractive	Attractive/ Mixed	Mixed	Attractive/ Mixed	Attractive/ Mixed		
Factor 2: Infrastructure for R	&D							
R&D spending % of GDP	0.76	2.23	2.87	0.86	1.77	2.79		
Clinical trials per capita	36.14435091	245.9623648	445.2940239	21.11706151	149.0663077	251.1714383		
Performance compared to Sample	Challenging	Attractive	Attractive	Mixed	Mixed	Attractive		
Factor 3: Intellectual proper	ty protection							
RDP	Challenging	Attractive	Attractive	Challenging	Attractive	Attractive		
PTE	Challenging	Attractive	Attractive	Challenging	Attractive	Attractive		
Performance compared to Sample	Challenging	Attractive	Attractive	Challenging	Attractive	Attractive		
Factor 4: The regulatory env	ironment							
Existence of regulatory framework and efficiency	Challenging	Attractive	/Mixed Attractive	Challenging	Attractive	Attractive		
Factor 5: Technology transfe	r frameworks							
Frameworks in place	Mixed	Attractive	Attractive	Mixed	Attractive	Attractive		
Factor 6: Market and commercial incentives								
P&R policies	Challenging	Mixed	Mixed	Challenging	Mixed	Attractive		
Factor 7: Legal certainty (including the rule of law)								
RoL index ranking	40	10	N/A	59	13	19		
Performance compared to Sample	Mixed	Attractive	N/A	Mixed	Attractive	Attractive		